NH3 observations of the S235 star-forming region: Dense gas in inter-core bridges
-
- Ross A Burns
- Mizusawa VLBI Observatory, National Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
-
- Toshihiro Handa
- Amanogawa Galaxy Astronomy Research Center, Kagoshima University , 1-21-35 Kôrimoto, Kagoshima, Kagoshima 890-0065, Japan
-
- Toshihiro Omodaka
- Graduate School of Science and Engineering, Kagoshima University , 1-21-35 Kôrimoto, Kagoshima, Kagoshima 890-0065, Japan
-
- Andrej M Sobolev
- Ural Federal University , 19 Mira St. 620002, Ekaterinburg, Russia
-
- Maria S Kirsanova
- Ural Federal University , 19 Mira St. 620002, Ekaterinburg, Russia
-
- Takumi Nagayama
- Mizusawa VLBI observatory , NAOJ 2-12, Hoshigaoka, Mizusawa, Oshu, Iwate 023-0861, Japan
-
- James O Chibueze
- Space Research Unit, Physics Department, North-West University , Potchefstroom, 2520, South Africa
-
- Mikito Kohno
- Department of Physics, Nagoya University , Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
-
- Makoto Nakano
- Faculty of Science and Technology, Oita University , 700 Dannoharu, Oita, Oita 870-1192, Japan
-
- Kazuyoshi Sunada
- Mizusawa VLBI observatory , NAOJ 2-12, Hoshigaoka, Mizusawa, Oshu, Iwate 023-0861, Japan
-
- Dmitry A Ladeyschikov
- Ural Federal University , 19 Mira St. 620002, Ekaterinburg, Russia
この論文をさがす
説明
<jats:title>Abstract</jats:title> <jats:p>Star formation is thought to be driven by two groups of mechanisms; spontaneous collapse and triggered collapse. Triggered star formation mechanisms further diverge into cloud–cloud collision (CCC), “collect and collapse” (C&C) and shock-induced collapse of pre-existing, gravitationally stable cores, or “radiation driven implosion” (RDI). To evaluate the contributions of these mechanisms and establish whether these processes can occur together within the same star-forming region, we performed mapping observations of radio-frequency ammonia and water maser emission lines in the S235 massive star-forming region. Via spectral analyses of main, hyperfine, and multi-transitional ammonia lines we explored the distribution of temperature and column density in the dense gas in the S235 and S235AB star-forming region. The most remarkable result of the mapping observations is the discovery of high-density gas in inter-core bridges which physically link dense molecular cores that house young proto-stellar clusters. The presence of dense gas implies the potential for future star formation within the system of cores and gas bridges. Cluster formation implies collapse, and the continuous physical links, also seen in re-imaged archival CS and 13CO maps, suggest a common origin to the molecular cores housing these clusters, i.e a structure condensed from a single, larger parent cloud, brought about by the influence of a local expanding H$\,$ ii region. An ammonia absorption feature co-locating with the center of the extended H$\,$ ii region may be attributed to an older gas component left over from the period prior to formation of the H$\,$ ii region. Our observations also detail known and new sites of water maser emission, highlighting regions of active ongoing star formation.</jats:p>
収録刊行物
-
- Publications of the Astronomical Society of Japan
-
Publications of the Astronomical Society of Japan 71 (5), 91-, 2019-07-26
Oxford University Press (OUP)
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1360584342602010368
-
- ISSN
- 2053051X
- 00046264
-
- HANDLE
- 10394/33585
- 10394/34512
-
- データソース種別
-
- Crossref
- OpenAIRE