- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Search this article
Description
Specific activities of tyrosine tubulin kinase in the particulate fractions from rat cerebellum, medulla oblongata, hypothalamus, striatum, midbrain, and cerebral cortex ranged within 30% of each other and more than 3 times higher than those in the soluble fractions. In the cerebral cortex, tyrosine protein kinase activity toward tubulin and tyrosine-glutamate (1:4) copolymers was mainly distributed in the plasma membrane and the microsome fractions. The kinase activity in cerebral cortex particulate fractions was quantitatively solubilized and separated into two peaks, kinase I and kinase II, by Sephacryl S-300 gel filtration in the presence of 0.2% Nonidet P-40 and 0.2 M NaCl. Kinases I and II were each resolved into 5 active peaks (I-1----5 and II-1----5) by casein-Sepharose column chromatography. The molecular weights of these kinases were estimated from the s20,w values to be 59,000-65,000. The Km values of II-1----5 for tubulin were nearly 10 times higher than those of I-1----5. However, the Km values of the two groups of kinases for tyrosine-glutamate copolymers were not so significantly different. About 60% of the copolymers kinase activity in I-3, I-4, II-3, and II-4 was immunoprecipitable with a saturating amount of monoclonal antibody against pp60c-src. Incubation of the immunoprecipitates with ATP resulted in the autophosphorylation of a 60 kDa protein in I-3 and I-4, and a 52 kDa protein in II-3 and II-4. Immunoblotting also indicated I-3 and I-4 as 60 kDa bands and II-3 and II-4 as 52 kDa bands on SDS-polyacrylamide gels.(ABSTRACT TRUNCATED AT 250 WORDS)
Journal
-
- The Journal of Biochemistry
-
The Journal of Biochemistry 104 807-816, 1988-11-01
Oxford University Press (OUP)