- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Second-order nonlinearity and phase matching in thermally poled twin-hole fiber
Search this article
Description
The second-order nonlinearity in poled optical fiber is promising for application to electro-optic switching and modulation, second-harmonic generation (SHG), and frequency conversion. In this paper, we poled a twin-hole fiber, which is similar to PANDA fiber but the strain applying part is vacant. Electrode wires were inserted into the side holes, and the fiber was poled with a voltage of 2.5 kV at 300°C for 40 min. We measured the SHG using a linearly polarized Q-switched Nd3+:YAG laser. The SH power was highest for polarization parallel with the direction of two holes. The SH power had a maximum for the fiber length of 5 cm and decreased for longer fiber lengths. We analyzed this phase matching considering cladding modes. We calculated numerically the propagation constants of the cladding modes. We showed that the ~40th-order cladding mode of the SH wave and the fundamental core mode of the fundamental wave are in phase matching. We also performed an SHG of poled twin-hole fiber using a 260-fs passively mode-locked Er3+-doped fiber laser as a fundamental-wave source. The SH signal from the poled fiber was proportional to the 1.82-th power of the fundamental power, and the polarization dependence agreed with that measured with an Nd3+:YAG laser. We discussed an application of the poled twin-hole fiber.
Journal
-
- SPIE Proceedings
-
SPIE Proceedings 5350 115-, 2004-06-14
SPIE
- Tweet
Details 詳細情報について
-
- CRID
- 1874242817758040192
-
- ISSN
- 0277786X
-
- Data Source
-
- OpenAIRE