- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Afferent connections of the dorsal, perigenual, and subgenual anterior cingulate cortices of the monkey: Amygdalar inputs and intrinsic connections
Search this article
Description
The anterior cingulate cortex (ACC) is crucial for emotional processing, and its abnormal activities contributes to mood disorders. The ACC is divided into three subregions: the dorsal ACC (dACC), perigenual ACC (pgACC), and subgenual ACC (sgACC). Although these regions have been implicated in emotional processing, the dACC is more involved in cognitive functions, while the other two regions are important in the pathophysiology underlying mood disorders. Recent studies have suggested that the sgACC and pgACC exhibit opposite emotion-related activity patterns and that an interaction of the ACC with the amygdala is crucial for emotion-related ACC functions. Here, we injected neuronal tracers into the sgACC, pgACC, and dACC of macaques and quantitatively compared the distributions of the retrogradely labeled neurons in the amygdalar nuclei. For both the dACC and pgACC, about 90% of the labeled neurons were found in the basal nucleus, about 10% were in the accessory basal nucleus, and the lateral nucleus had almost no neuronal labeling. However, after sgACC injections, nearly half of the labeled neurons were found in the accessory basal nucleus, and a moderate number of labeled neurons were found in the lateral nucleus. These differences in amygdalar inputs might underlie the functional differences in the sgACC and pgACC. Moreover, after tracer injections in the sgACC, labeled neurons were observed in the pgACC and not the dACC, suggesting that the pgACC directly influences the activity of the sgACC.
Journal
-
- Neuroscience Letters
-
Neuroscience Letters 681 93-99, 2018-08-01
Elsevier BV