Extensions of tensor products of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:math>-orbifold models of the lattice vertex operator algebra <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi>V</mml:mi></mml:mrow><mml:mrow><mml:msqrt><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msqrt><mml:msub><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:math>
この論文をさがす
説明
Abstract Let p be an odd prime and let σ ˆ be an order p automorphism of V 2 A p − 1 which is a lift of a p-cycle in the Weyl group Weyl ( A p − 1 ) ≅ S p . We study a certain extension V of a tensor product of finitely many copies of the orbifold model V 2 A p − 1 〈 σ ˆ 〉 and give a criterion for V that every irreducible V-module is a simple current.
収録刊行物
-
- Journal of Algebra
-
Journal of Algebra 510 24-51, 2018-09
Elsevier BV