- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Real-world visual statistics and infants��� first-learned object names
-
- Smith, Linda B.
- Creator
Metadata
- Published
- 2016-01-01
- DOI
-
- 10.17910/b7.268
- Publisher
- Databrary
- Creator Name (e-Rad)
-
- Smith, Linda B.
Description
We offer a new solution to the unsolved problem of how infants break into word learning based on the visual statistics of everyday infant-perspective scenes. Images from head camera video captured by 8 1/2 to 10 1/2 monthold infants at 147 at-home mealtime events were analysed for the objects in view. The images were found to be highly cluttered with many different objects in view. However, the frequency distribution of object categories was extremely right skewed such that a very small set of objects was pervasively present���a fact that may substantially reduce the problem of referential ambiguity. The statistical structure of objects in these infant egocentric scenes differs markedly from that in the training sets used in computational models and in experiments on statistical word-referent learning. Therefore, the results also indicate a need to re-examine current explanations of how infants break into word learning. This article is part of the themed issue ���Newfrontiers for statistical learning in the cognitive sciences���.