On efficient prediction and predictive density estimation for normal and spherically symmetric models

メタデータ

公開日
2019-01-01
DOI
  • 10.5446/58002
  • 10.14288/1.0383293
公開者
Banff International Research Station (BIRS) for Mathematical Innovation and Discovery
データ作成者 (e-Rad)
  • Strawderman, William

説明

Let $X ~ Nd(q,s2I)$, $Y ~ Nd(q, s2I)$, $U ~ Nk(q, s2I)$ be independently distributed, or more generally let $(X, Y, U)$ have a spherically symmetric distribution with density $hd+k/2f (h(||x â q||2+ ||u||2+ ||y â cq||2))$ with unknown parameters $h \in Rd$, and with known density $f( . )$ and constant $c > 0$. Based on observing $X = x, U = u$, we consider the problem of obtaining a predictive density $q_hat( â ¢ ; x, u)$ for $Y$ with risk measured by the expected Kullbackâ Leibler loss. A benchmark procedure is the minimum risk equivariant density $

Author affiliation: Rutgers University

Unreviewed

Faculty

Non UBC

関連論文

もっと見る

詳細情報 詳細情報について

ページトップへ