-
- Fuhui Long
- 作成者
-
- Hanchuan Peng
- 作成者
-
- Xiao Liu
- 作成者
-
- Stuart K Kim
- 作成者
-
- Eugene Myers
- 作成者
-
- Martin Weigert
- 作成者
メタデータ
- 公開日
- 2022-02-01
- DOI
-
- 10.5281/zenodo.5942574
- 10.5281/zenodo.5942575
- 公開者
- Zenodo
- データ作成者 (e-Rad)
-
- Fuhui Long
- Hanchuan Peng
- Xiao Liu
- Stuart K Kim
- Eugene Myers
- Dagmar Kainmüller
- Martin Weigert
説明
The dataset consists of 28 confocal microscopy volumes of C. elegans worms at the L1 stage and corresponding stacks of densely annotated nuclei instance segmentation masks. * 28 raw images and corresponding masks of average dimension (xyz) 1050 x 140 x 140<br> * Pixelsize (xyz): 0.116 x 0.116 x 0.122��m<br> * Microscope: Leica confocal microscopy, 63x oil objective <br> The original raw data and preliminary annotations were part of the following publication (please cite if you use the dataset):<br> <br> Long, F., Peng, H., Liu, X., Kim, S. K., & Myers, E. (2009). A 3D digital atlas of C. elegans and its application to single-cell analyses. Nature methods, 6(9), 667-672. The nuclei annotation masks were further manually curated by Dagmar Kainmueller (MDC Berlin) for the following publication: Hirsch, P., & Kainmueller, D. (2020). An auxiliary task for learning nuclei segmentation in 3d microscopy images. In Medical Imaging with Deep Learning (pp. 304-321). PMLR. We provide the dataset already structured into the train/validation/test split as used by the above as well as the following publications: Weigert, M., Schmidt, U., Haase, R., Sugawara, K., & Myers, G. (2020). Star-convex polyhedra for 3d object detection and segmentation in microscopy. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 3666-3673).<br>