-
- Liang, Ying
- 作成者
-
- Shuo Chen
- 寄与者
-
- Chen, Shuo
- 寄与者
-
- Wu, Jia-Le
- 寄与者
-
- Tang, Yi-Gang
- 寄与者
-
- Song, Hua-Xin
- 寄与者
-
- Wu, Li-Li
- 寄与者
-
- Xing, Yang-Fei
- 寄与者
-
- Yan, Ni
- 寄与者
-
- Li, Yun-Tong
- 寄与者
-
- Wang, Zheng-Yuan
- 寄与者
-
- Xiao, Shu-Jun
- 寄与者
-
- Lu, Xin
- 寄与者
-
- Chen, Sai-Juan
- 寄与者
-
- Lu, Min
- 寄与者
メタデータ
- 公開日
- 2020-01-01
- DOI
-
- 10.17632/yy7hxp5td4
- 10.17632/yy7hxp5td4.1
- 公開者
- Mendeley
- データ作成者 (e-Rad)
-
- Liang, Ying
説明
TP53 is the most frequently mutated gene in cancer, yet these mutations remain therapeutically non-actionable. Major challenges in drugging p53 mutations include heterogeneous mechanisms of inactivation and the absence of broadly-applicable allosteric sites. Here we report the identification of small molecules including arsenic trioxide (ATO), an established agent in treating acute promyelocytic leukemia, as cysteine-reactive compounds that rescue structural p53 mutations. Crystal structures of arsenic-bound p53 mutants reveal a cryptic allosteric site involving three arsenic coordinating cysteines within the DNA-binding domain, distal to the zinc-binding site. Arsenic binding stabilizes the DNA-binding loop-sheet-helix motif alongside the overall β-sandwich fold, endowing p53 mutants with thermostability and transcriptional activity. In cellular and mouse xenograft models, ATO reactivates mutant p53 for tumor suppression. Investigation of the most frequent twenty-five p53 mutations informs patient stratification for clinical exploration. Our results provide mechanistic basis for repurposing ATO to target p53 mutations for widely-applicable yet personalized cancer therapies.