Functional recovery by application of human dedifferentiated fat cells on cerebral infarction mice model

Bibliographic Information

Title
Functional recovery by application of human dedifferentiated fat cells on cerebral infarction mice model
Other Title
  • マウス脳梗塞モデルにおけるヒト脱分化脂肪細胞による機能回復
Author
覺道, 知樹
University
大阪歯科大学
Types of degree
博士(歯学)
Grant ID
甲第822号
Degree year
2018-03-09

Description

Elderly people whose daily activities have declined due to a cerebrovascular disorder may suffer from dysphagia and may find oral hygiene difficult. Therefore, it is important to establish an effective therapy for the underlying cerebrovascular disorder. Dedifferentiated fat cells (DFAT) were obtained from mature adipocytes isolated from human buccal adipose pads in a ceiling culture. DFAT expressed the neural markers Nestin and SOX2. Flow cytometric analysis revealed that the cells had properties similar to mesenchymal stem cells. Although the transplantation of DFAT did not change the infarction area and volume ratios in a murine cerebral infarction model, functional recovery was observed in behavioral tests. Furthermore, DFAT administered to mice were later detected in cerebral infarctions. It therefore appears that transplanted DFAT affect the brain after infarction and contribute to the promotion of functional recovery. This finding may provide new cell replacement therapy options for treating disorders of the central nervous system.

2017年度

収集根拠 : 博士論文(自動収集)
資料形態 : テキストデータ
コレクション : 国立国会図書館デジタルコレクション > デジタル化資料 > 博士論文
Elderly people whose daily activities have declined due to a cerebrovascular disorder may suffer from dysphagia and may find oral hygiene difficult. Therefore, it is important to establish an effective therapy for the underlying cerebrovascular disorder. Dedifferentiated fat cells (DFAT) were obtained from mature adipocytes isolated from human buccal adipose pads in a ceiling culture. DFAT expressed the neural markers Nestin and SOX2. Flow cytometric analysis revealed that the cells had properties similar to mesenchymal stem cells. Although the transplantation of DFAT did not change the infarction area and volume ratios in a murine cerebral infarction model, functional recovery was observed in behavioral tests. Furthermore, DFAT administered to mice were later detected in cerebral infarctions. It therefore appears that transplanted DFAT affect the brain after infarction and contribute to the promotion of functional recovery. This finding may provide new cell replacement therapy options for treating disorders of the central nervous system.
2017年度

Details 詳細情報について

Report a problem

Back to top