Development of efficient algorithms for quantum chemistry calculations of large molecules

書誌事項

タイトル
Development of efficient algorithms for quantum chemistry calculations of large molecules
著者
石村, 和也
著者
イシムラ, カズヤ
著者
ISHIMURA, Kazuya
学位授与大学
総合研究大学院大学
取得学位
博士(理学)
学位授与番号
乙第178号
学位授与年月日
2007-09-28

この論文をさがす

説明

Quantum chemistry plays an important role in elucidating molecular geometries,<br /> electronic states, and reaction mechanisms, because of the developments of a variety of<br /> theoretical methods, such as Hartree-Fock (HF), Møler-Plesset (MP) perturbation,<br /> configuration interaction (CI), coupled-cluster (CC), and density functional theory <br /> (DFT) methods. Electronic structure calculations have been carried out by not only<br /> theoretical chemists but also experimental chemists. DFT is currently most widely used<br />to investigate large molecules in the ground state as well as small molecules because of the low computational cost. However, the generally used functionals fail to describe<br />correctly non-covalent interactions that are important for host-guest molecules,<br /> self-assembly, and molecular recognition, and they tend to underestimate reaction<br /> barriers. Many attempts have been made to develop new functionals and add<br /> semiempirical or empirical correction terms to standard functionals, but no generally<br /> accepted DFT method has emerged yet.<br />  Second-order Møler-Plesset perturbation theory (MP2) is the simplest method that<br /> includes electron correlation important for non-covalent interactions and reaction<br /> barriers nonempirically. However, the computational cost of MP2 is considerably<br /> higher than that of DFT. In addition, much larger sizes of fast memory and hard disk<br /> are required in MP2 calculations. These make MP2 calculations increasingly difficult<br /> for larger molecules. Since workstation or personal computer (PC) clusters have<br /> become popular for quantum chemistry calculations, an efficient parallel calculation is<br /> a solution of the problem. Therefore, new parallel algorithms for MP2 energy and<br /> gradient calculations are presented in this thesis. Furthermore, an efficient algorithm<br /> for the generation of two-electron repulsion integrals (ERIs) which is important in <br /> quantum chemistry calculations is also presented.<br />  For the calculations of excited states, different approaches are required: for<br /> example, CI, multi-configuration self-consistent field (MCSCF), time-dependent DFT<br /> (TDDFT), and symmetry adapted cluster (SAC)/SAC-CI methods. One of the most<br /> accurate methods is SAC/SAC-CI, as demonstrated for many molecules. In this thesis,<br /> SAC/SAC-CI calculations of ground, ionized, and excited states are presented.<br />  This thesis consists of five chapters: a new algorithm of two-electron repulsion<br /> integral calculations (Chapter I), a new parallel algorithm of MP2 energy calculations<br /> (Chapter II), a new parallel algorithm of MP2 energy gradient calculations (Chapter<br /> III), applications of MP2 calculations (Chapter IV), and SAC/SAC-CI calculations of <br /> ionized and excited states (Chapter V).<br />  In quantum chemistry calculations, the generation of ERIs is one of the most basic<br /> subjects and is the most time-consuming step especially in direct SCF calculations.<br /> Many algorithms have been developed to reduce the computational cost. In<br /> Pople-Hehre algorithm, Cartesian axes are rotated to make several coordinate<br /> components zero or constant, so that these components are skipped in the generation of ERIs. In McMurchie-Davidson algorithm, ERIs are generated from (ss|ss) type<br /> integrals using a recurrence relation derived from Hermite polynomials. By combining<br /> these two algorithms, a new algorithm is developed in Chapter I. The results show that<br /> the new algorithm reduces the computational cost by 10 - 40%, as compared with the<br /> original algorithms. It is notable that the generation of ERIs including d functions is<br /> considerably fast. The program implemented officially in GAMESS in 2004 has been<br /> used all over the world.<br />  In quantum mechanics, perturbation methods can be used for adding corrections<br /> to reference solutions. In the MP perturbation method, a sum over Fock operators is<br /> used as the reference term, and the exact two-electron repulsion operator minus twice<br /> the average two-electron repulsion operator is used as the perturbation term. It is the<br /> advantage that the MP perturbation method is size consistent and size extensive, unlike<br /> truncated CI methods. The zero-order wave function is the HF Slater determinant, and <br /> the zero-order energy is expressed as a sum of occupied molecular orbital (MO)<br /> energies. The first-order perturbation is the correction for the overcounting of<br /> two-electron repulsions at zero-order, and the first-order energy corresponds to the HF<br /> energy. The MP correlation starts at second-order. In general, second-order (MP2) <br /> accounts for 80 - 90% of electron correlation. Therefore, MP2 is focused in this thesis<br /> since it is applicable to large molecules with considerable reliability and low <br ...

総研大乙第178号

博士論文

詳細情報 詳細情報について

問題の指摘

ページトップへ