Construction of cross-sectional theory on those conformally invariant random fields which extend SLE

About This Project

Japan Grant Number
JP22K20341 (JGN)
Funding Program
Grants-in-Aid for Scientific Research
Funding Organization
Japan Society for the Promotion of Science

Kakenhi Information

Project/Area Number
22K20341
Research Category
Grant-in-Aid for Research Activity Start-up
Allocation Type
  • Multi-year Fund
Review Section / Research Field
  • 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research Institution
  • Kyushu University
Project Period (FY)
2022-08-31 〜 2024-03-31
Project Status
Completed
Budget Amount*help
1,820,000 Yen (Direct Cost: 1,400,000 Yen Indirect Cost: 420,000 Yen)

Research Abstract

統計物理における2次元臨界現象を記述する道具として,SLE(シュラム・レヴナー発展) なる確率場が知られている.SLEは,単連結な平面領域に定義される「共形不変な」ランダム曲線である.従前,それを多重連結領域へと拡張する試みが散発的になされてきた.本研究の目的は,それらの試みを統合する横断的理論の構築である.4つの異なる既存理論を関係付け,臨界現象に相当する共形不変確率場の構造の解明を目指す.

Related Articles

See more

Related Data

See more

Related Books

See more

Related Dissertations

See more

Related Projects

See more

Related Products

See more

Details 詳細情報について

Back to top