On the digits in the base-b expansion of smooth numbers
-
- 金子, 元
- 筑波大学
-
- Kaneko, Hajime
- Institute of Mathematics, University of Tsukuba・Research Core for Mathematical Sciences, University of Tsukuba
書誌事項
- タイトル別名
-
- On the digits in the base-$b$ expansion of smooth numbers (Analytic Number Theory and Related Areas)
この論文をさがす
説明
Erdös [4] conjectured that, for any integer mgeq 9, the digit 2 appears at least once in the ternary expansion of 2^{m}. More precisely, Dupuy and Weirich [3] conjectured that. for any sufficiently large m, the digits 0, 1, and 2 appear "uniformly" in the ternary expansion of 2^{m}. This is still open. Stewart [10] obtained a lower bound for the number of nonzero digits in the ternary expansion of 2^{m}, thus giving (very) partial results of "uniformity". In this report, we investigate the number of nonzero digits in the base-b expansion of more general smooth numbers and introduce the main results established in [2].
収録刊行物
-
- 数理解析研究所講究録
-
数理解析研究所講究録 2092 97-103, 2018-11
京都大学数理解析研究所
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050003824810716288
-
- NII論文ID
- 120006861272
-
- NII書誌ID
- AN00061013
-
- ISSN
- 18802818
-
- HANDLE
- 2433/251655
-
- NDL書誌ID
- 029624009
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- IRDB
- NDLサーチ
- CiNii Articles