Compositional and Solvent Engineering in Dion–Jacobson 2D Perovskites Boosts Solar Cell Efficiency and Stability
-
- Weijun Ke
- Department of Chemistry Northwestern University 2145 North Sheridan Road Evanston IL 60208 USA
-
- Lingling Mao
- Department of Chemistry Northwestern University 2145 North Sheridan Road Evanston IL 60208 USA
-
- Constantinos C. Stoumpos
- Department of Chemistry Northwestern University 2145 North Sheridan Road Evanston IL 60208 USA
-
- Justin Hoffman
- Department of Chemistry Northwestern University 2145 North Sheridan Road Evanston IL 60208 USA
-
- Ioannis Spanopoulos
- Department of Chemistry Northwestern University 2145 North Sheridan Road Evanston IL 60208 USA
-
- Aditya D. Mohite
- Department of Chemical and Biomolecular Engineering Rice University 6100 Main St. Houston TX 77005 USA
-
- Mercouri G. Kanatzidis
- Department of Chemistry Northwestern University 2145 North Sheridan Road Evanston IL 60208 USA
Description
<jats:title>Abstract</jats:title><jats:p>Hybrid halide 2D perovskites deserve special attention because they exhibit superior environmental stability compared with their 3D analogs. The closer interlayer distance discovered in 2D Dion–Jacobson (DJ) type of halide perovskites relative to 2D Ruddlesden–Popper (RP) perovskites implies better carrier charge transport and superior performance in solar cells. Here, the structure and properties of 2D DJ perovskites employing 3‐(aminomethyl)piperidinium (3AMP<jats:sup>2+</jats:sup>) as the spacing cation and a mixture of methylammonium (MA<jats:sup>+</jats:sup>) and formamidinium (FA<jats:sup>+</jats:sup>) cations in the perovskite cages are presented. Using single‐crystal X‐ray crystallography, it is found that the mixed‐cation (3AMP)(MA<jats:sub>0.75</jats:sub>FA<jats:sub>0.25</jats:sub>)<jats:sub>3</jats:sub>Pb<jats:sub>4</jats:sub>I<jats:sub>13</jats:sub> perovskite has a narrower bandgap, less distorted inorganic framework, and larger PbIPb angles than the single‐cation (3AMP)(MA)<jats:sub>3</jats:sub>Pb<jats:sub>4</jats:sub>I<jats:sub>13</jats:sub>. Furthermore, the (3AMP)(MA<jats:sub>0.75</jats:sub>FA<jats:sub>0.25</jats:sub>)<jats:sub>3</jats:sub>Pb<jats:sub>4</jats:sub>I<jats:sub>13</jats:sub> films made by a solvent‐engineering method with a small amount of hydriodic acid have a much better film morphology and crystalline quality and more preferred perpendicular orientation. As a result, the (3AMP)(MA<jats:sub>0.75</jats:sub>FA<jats:sub>0.25</jats:sub>)<jats:sub>3</jats:sub>Pb<jats:sub>4</jats:sub>I<jats:sub>13</jats:sub>‐based solar cells exhibit a champion power conversion efficiency of 12.04% with a high fill factor of 81.04% and a 50% average efficiency improvement compared to the pristine (3AMP)(MA)<jats:sub>3</jats:sub>Pb<jats:sub>4</jats:sub>I<jats:sub>13</jats:sub> cells. Most importantly, the 2D DJ 3AMP‐based perovskite films and devices show better air and light stability than the 2D RP butylammonium‐based perovskites and their 3D analogs.</jats:p>
Journal
-
- Advanced Energy Materials
-
Advanced Energy Materials 9 (10), 2019-01-21
Wiley
- Tweet
Details 詳細情報について
-
- CRID
- 1360011143747308032
-
- ISSN
- 16146840
- 16146832
-
- Data Source
-
- Crossref