Compositional and Solvent Engineering in Dion–Jacobson 2D Perovskites Boosts Solar Cell Efficiency and Stability

  • Weijun Ke
    Department of Chemistry Northwestern University 2145 North Sheridan Road Evanston IL 60208 USA
  • Lingling Mao
    Department of Chemistry Northwestern University 2145 North Sheridan Road Evanston IL 60208 USA
  • Constantinos C. Stoumpos
    Department of Chemistry Northwestern University 2145 North Sheridan Road Evanston IL 60208 USA
  • Justin Hoffman
    Department of Chemistry Northwestern University 2145 North Sheridan Road Evanston IL 60208 USA
  • Ioannis Spanopoulos
    Department of Chemistry Northwestern University 2145 North Sheridan Road Evanston IL 60208 USA
  • Aditya D. Mohite
    Department of Chemical and Biomolecular Engineering Rice University 6100 Main St. Houston TX 77005 USA
  • Mercouri G. Kanatzidis
    Department of Chemistry Northwestern University 2145 North Sheridan Road Evanston IL 60208 USA

説明

<jats:title>Abstract</jats:title><jats:p>Hybrid halide 2D perovskites deserve special attention because they exhibit superior environmental stability compared with their 3D analogs. The closer interlayer distance discovered in 2D Dion–Jacobson (DJ) type of halide perovskites relative to 2D Ruddlesden–Popper (RP) perovskites implies better carrier charge transport and superior performance in solar cells. Here, the structure and properties of 2D DJ perovskites employing 3‐(aminomethyl)piperidinium (3AMP<jats:sup>2+</jats:sup>) as the spacing cation and a mixture of methylammonium (MA<jats:sup>+</jats:sup>) and formamidinium (FA<jats:sup>+</jats:sup>) cations in the perovskite cages are presented. Using single‐crystal X‐ray crystallography, it is found that the mixed‐cation (3AMP)(MA<jats:sub>0.75</jats:sub>FA<jats:sub>0.25</jats:sub>)<jats:sub>3</jats:sub>Pb<jats:sub>4</jats:sub>I<jats:sub>13</jats:sub> perovskite has a narrower bandgap, less distorted inorganic framework, and larger PbIPb angles than the single‐cation (3AMP)(MA)<jats:sub>3</jats:sub>Pb<jats:sub>4</jats:sub>I<jats:sub>13</jats:sub>. Furthermore, the (3AMP)(MA<jats:sub>0.75</jats:sub>FA<jats:sub>0.25</jats:sub>)<jats:sub>3</jats:sub>Pb<jats:sub>4</jats:sub>I<jats:sub>13</jats:sub> films made by a solvent‐engineering method with a small amount of hydriodic acid have a much better film morphology and crystalline quality and more preferred perpendicular orientation. As a result, the (3AMP)(MA<jats:sub>0.75</jats:sub>FA<jats:sub>0.25</jats:sub>)<jats:sub>3</jats:sub>Pb<jats:sub>4</jats:sub>I<jats:sub>13</jats:sub>‐based solar cells exhibit a champion power conversion efficiency of 12.04% with a high fill factor of 81.04% and a 50% average efficiency improvement compared to the pristine (3AMP)(MA)<jats:sub>3</jats:sub>Pb<jats:sub>4</jats:sub>I<jats:sub>13</jats:sub> cells. Most importantly, the 2D DJ 3AMP‐based perovskite films and devices show better air and light stability than the 2D RP butylammonium‐based perovskites and their 3D analogs.</jats:p>

収録刊行物

被引用文献 (2)*注記

もっと見る

問題の指摘

ページトップへ