Monolithic multichannel secondary electron detector for distributed axis electron beam lithography and inspection

抄録

<jats:p>The attractiveness of electron beam systems would be greatly enhanced if the throughput could be improved. One approach, described previously by the authors employs a uniform axial magnetic field to focus thousands of electron beams simultaneously [D. S. Pickard et al., J. Vac. Sci. Technol. B 21, 2709 (2003); T. R. Groves and R. A. Kendall, ibid., 16, 3168 (1998)]. The beamlets never combine to form a common crossover, thereby avoiding the throughput limitations due to space charge blurring. With this approach, one challenge was to fashion a detection scheme that maintains a tight beamlet packing density (250μm pitch) while minimizing cross-talk between adjacent secondary electron signals, either by crossing trajectories or within the detector. A pin-diode-based detector was investigated as a potential component of the multielement detection scheme for the authors’ system. The detector features a two-dimensional array of elements on high resistivity float-zone silicon. The detector attributes that were attractive to their application include modest internal amplification (&gt;5000 at 25kV), fast response time (measured at &lt;10ns), ability to be made compact and with dense packed electrodes (&lt;250μm), low electrode capacitance (&lt;1pF), and ability for (complementary metal-oxide semiconductor) circuitry to be integrated directly onto the detector array so that low noise amplification of each signal can be performed. This detector requires a retarding field for the primary beam, which accelerates the secondary electrons to energies sufficient to excite a large number of internal secondaries.</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ