Effective interaction between small unilamellar vesicles as probed by coarse-grained molecular dynamics simulations
-
- Wataru Shinoda
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
-
- Michael L. Klein
- Institute of Computational Molecular Sciences, Temple University, 1900 N. 12 th Street, Philadelphia, PA 19122, USA
この論文をさがす
説明
<jats:title>Abstract</jats:title> <jats:p>A series of molecular dynamics (MD) simulations has been undertaken to investigate the effective interaction between vesicles including PC (phosphatidylcholine) and PE (phosphatidylethanolamine) lipids using the Shinoda–DeVane–Klein coarse-grained force field. No signatures of fusion were detected during MD simulations employing two apposed unilamellar vesicles, each composed of 1512 lipid molecules. Association free energy of the two stable vesicles depends on the lipid composition. The two PC vesicles exhibit a purely repulsive interaction with each other, whereas two PE vesicles show a free energy gain at the contact. A mixed PC/PE (1:1) vesicle shows a higher flexibility having a lower energy barrier on the deformation, which is caused by lipid sorting within each leaflet of the membranes. With a preformed channel or stalk between proximal membranes, PE molecules contribute to stabilize the stalk. The results suggest that the lipid components forming the membrane with a negative spontaneous curvature contribute to stabilize the stalk between two vesicles in contact.</jats:p>
収録刊行物
-
- Pure and Applied Chemistry
-
Pure and Applied Chemistry 86 (2), 215-222, 2014-01-25
Walter de Gruyter GmbH
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1360848662791096064
-
- ISSN
- 13653075
- 00334545
-
- 資料種別
- journal article
-
- データソース種別
-
- Crossref
- KAKEN
- OpenAIRE