-
- Tao Zhang
- Faculty of Physics and Center for Nanoscience (CeNS) Ludwig‐Maximilians‐Universität Geschwister‐Scholl‐Platz 1 80539 München Germany
-
- Caroline Hartl
- Faculty of Physics and Center for Nanoscience (CeNS) Ludwig‐Maximilians‐Universität Geschwister‐Scholl‐Platz 1 80539 München Germany
-
- Kilian Frank
- Faculty of Physics and Center for Nanoscience (CeNS) Ludwig‐Maximilians‐Universität Geschwister‐Scholl‐Platz 1 80539 München Germany
-
- Amelie Heuer‐Jungemann
- Faculty of Physics and Center for Nanoscience (CeNS) Ludwig‐Maximilians‐Universität Geschwister‐Scholl‐Platz 1 80539 München Germany
-
- Stefan Fischer
- Faculty of Physics and Center for Nanoscience (CeNS) Ludwig‐Maximilians‐Universität Geschwister‐Scholl‐Platz 1 80539 München Germany
-
- Philipp C. Nickels
- Faculty of Physics and Center for Nanoscience (CeNS) Ludwig‐Maximilians‐Universität Geschwister‐Scholl‐Platz 1 80539 München Germany
-
- Bert Nickel
- Faculty of Physics and Center for Nanoscience (CeNS) Ludwig‐Maximilians‐Universität Geschwister‐Scholl‐Platz 1 80539 München Germany
-
- Tim Liedl
- Faculty of Physics and Center for Nanoscience (CeNS) Ludwig‐Maximilians‐Universität Geschwister‐Scholl‐Platz 1 80539 München Germany
説明
<jats:title>Abstract</jats:title><jats:p>3D crystals assembled entirely from DNA provide a route to design materials on a molecular level and to arrange guest particles in predefined lattices. This requires design schemes that provide high rigidity and sufficiently large open guest space. A DNA‐origami‐based “tensegrity triangle” structure that assembles into a 3D rhombohedral crystalline lattice with an open structure in which 90% of the volume is empty space is presented here. Site‐specific placement of gold nanoparticles within the lattice demonstrates that these crystals are spacious enough to efficiently host 20 nm particles in a cavity size of 1.83 × 10<jats:sup>5</jats:sup> nm<jats:sup>3</jats:sup>, which would also suffice to accommodate ribosome‐sized macromolecules. The accurate assembly of the DNA origami lattice itself, as well as the precise incorporation of gold particles, is validated by electron microscopy and small‐angle X‐ray scattering experiments. The results show that it is possible to create DNA building blocks that assemble into lattices with customized geometry. Site‐specific hosting of nano objects in the optically transparent DNA lattice sets the stage for metamaterial and structural biology applications.</jats:p>
収録刊行物
-
- Advanced Materials
-
Advanced Materials 30 (28), 1800273-, 2018-05-18
Wiley