- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Data-driven PID Gain Tuning from Regulatory Control Data Based on Generalized Minimum Variance Evaluation
-
- Yokoyama Ryoko
- Graduate School of System Design, Tokyo Metropolitan University
-
- Masuda Shiro
- Graduate School of System Design, Tokyo Metropolitan University
Bibliographic Information
- Other Title
-
- 一般化最小分散評価に基づく定値制御データからのデータ駆動型PIDゲイン調整
- イッパンカ サイショウ ブンサン ヒョウカ ニ モトズク テイチ セイギョ データ カラ ノ データ クドウガタ PID ゲイン チョウセイ
Search this article
Description
<p>This paper considers a PID gain tuning method based on generalized minimum variance evaluation. The method derives the PID gains for reducing the variance of the generalized output from regulatory control data disturbed by colored noise. Advantages of the method include the use of normal operating data with no additional experiment for PID tuning. Numerical examples for a CARIMA (Controlled Auto-Regressive Integrated Moving Average) model and a liquid level control model show the proposed method is effective for not only colored noise but also stochastic disturbances combined with periodical rectangular deterministic signals. The simulation results demonstrate that the proposed approach has robustness to model mismatch of disturbance characteristics.</p>
Journal
-
- IEEJ Transactions on Electronics, Information and Systems
-
IEEJ Transactions on Electronics, Information and Systems 137 (1), 106-113, 2017
The Institute of Electrical Engineers of Japan
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1390001204607307520
-
- NII Article ID
- 130005188841
-
- NII Book ID
- AN10065950
-
- ISSN
- 13488155
- 03854221
-
- NDL BIB ID
- 027834057
-
- Text Lang
- ja
-
- Article Type
- journal article
-
- Data Source
-
- JaLC
- NDL Search
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE
-
- Abstract License Flag
- Disallowed