ON THE FINITENESS OF MOD $p$ GALOIS REPRESENTATIONS OF A LOCAL FIELD

Search this article

Description

Let $K$ be a local field and $k$ an algebraically closed field. We prove the finiteness of isomorphism classes of semisimple Galois representations of $K$ into $\mathrm{GL}_d(k)$ with bounded Artin conductor and residue degree. We calculate explicitly the number of totally ramified finite abelian extensions of $K$ with bounded conductor. Using this result, we give an upper bound for the number of certain Galois extensions of $K$.

Journal

References(10)*help

See more

Details 詳細情報について

  • CRID
    1390001205114795008
  • NII Article ID
    110006196739
  • NII Book ID
    AA00863953
  • DOI
    10.2748/tmj/1176734748
  • ISSN
    2186585X
    00408735
  • MRID
    2321993
  • Text Lang
    en
  • Data Source
    • JaLC
    • Crossref
    • CiNii Articles
  • Abstract License Flag
    Disallowed

Report a problem

Back to top