ON THE FINITENESS OF MOD $p$ GALOIS REPRESENTATIONS OF A LOCAL FIELD
-
- HARADA SHINYA
- Graduate School of Mathematics, Kyushu University
Search this article
Description
Let $K$ be a local field and $k$ an algebraically closed field. We prove the finiteness of isomorphism classes of semisimple Galois representations of $K$ into $\mathrm{GL}_d(k)$ with bounded Artin conductor and residue degree. We calculate explicitly the number of totally ramified finite abelian extensions of $K$ with bounded conductor. Using this result, we give an upper bound for the number of certain Galois extensions of $K$.
Journal
-
- Tohoku Mathematical Journal, Second Series
-
Tohoku Mathematical Journal, Second Series 59 (1), 67-77, 2007
Mathematical Institute, Tohoku University
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1390001205114795008
-
- NII Article ID
- 110006196739
-
- NII Book ID
- AA00863953
-
- ISSN
- 2186585X
- 00408735
-
- MRID
- 2321993
-
- Text Lang
- en
-
- Data Source
-
- JaLC
- Crossref
- CiNii Articles
-
- Abstract License Flag
- Disallowed