-
- HARADA SHINYA
- Graduate School of Mathematics, Kyushu University
この論文をさがす
説明
Let $K$ be a local field and $k$ an algebraically closed field. We prove the finiteness of isomorphism classes of semisimple Galois representations of $K$ into $\mathrm{GL}_d(k)$ with bounded Artin conductor and residue degree. We calculate explicitly the number of totally ramified finite abelian extensions of $K$ with bounded conductor. Using this result, we give an upper bound for the number of certain Galois extensions of $K$.
収録刊行物
-
- Tohoku Mathematical Journal, Second Series
-
Tohoku Mathematical Journal, Second Series 59 (1), 67-77, 2007
東北大学大学院理学研究科数学専攻
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390001205114795008
-
- NII論文ID
- 110006196739
-
- NII書誌ID
- AA00863953
-
- ISSN
- 2186585X
- 00408735
-
- MRID
- 2321993
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可