Associated variety,Kostant-Sekiguchi correspondence,and locally free U(n)-action on Harish-Chandra modules
-
- GYOJA Akihiko
- Division of Mathematics Faculty of Integrated Human Studies Kyoto University Graduate School of Mathematics Nagoya University
-
- YAMASHITA Hiroshi
- Department of Mathematics Faculty of Science Hokkaido University
書誌事項
- タイトル別名
-
- Associated variety, Kostant-Sekiguchi correspondence, and locally free U(\mathfrak{n})-action on Harish-Chandra modules
- Dedicated to Professor Takeshi Hirai on his sixtieth birthday
この論文をさがす
説明
Let \mathfrak{g} be a complex semisimple Lie algebra with symmetric decomposition \mathfrak{g}=\mathfrak{f}+\mathfrak{p}. For each irreducible Harish-Chandra (\mathfrak{g}, \mathfrak{f})-module X, we construct a family of nilpotent Lie subalgebras \mathfrak{n}(\mathcal{O}) of \mathfrak{g} whose universal enveloping algebras U(\mathfrak{n}(\mathcal{O})) act on X locally freely. The Lie subalgebras \mathfrak{n}(\mathcal{O}) are parametrized by the nilpotent orbits \mathcal{O} in the associated variety of X, and they are obtained by making use of the Cayley tranformation of \mathfrak{s}\mathfrak{l}2-triples (Kostant-Sekiguchi correspondence). As a consequence, it is shown that an irreducible Harish-Chandra module has the possible maximal Gelfand-Kirillov dimension if and only if it admits locally free U(\mathfrak{n}m)-action for \mathfrak{n}m=\mathfrak{n}(\mathcal{O}max) attached to a principal nilpotent orbit \mathcal{O}max in \mathfrak{p}$.
収録刊行物
-
- Journal of the Mathematical Society of Japan
-
Journal of the Mathematical Society of Japan 51 (1), 129-149, 1999
一般社団法人 日本数学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390001205116072704
-
- NII論文ID
- 10002151444
-
- NII書誌ID
- AA0070177X
-
- ISSN
- 18811167
- 18812333
- 00255645
-
- HANDLE
- 2115/69104
-
- MRID
- 1661024
-
- NDL書誌ID
- 4643293
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可