1変数材積式の羃指数の推定法 (I)

書誌事項

タイトル別名
  • Method of estimating exponent in volume equation with a single variable (I)
  • 1変数材積式の冪指数の推定法-1-順序統計を用いた2点推定の理論
  • 1 ヘンスウ ザイセキシキ ノ ベキシスウ ノ スイテイホウ 1 ジュンジョ
  • 順序統計を用いた2点推定の理論
  • Theory of two points estimation based on order statistics

この論文をさがす

説明

材積式‘V=aDb’は,海辺の対数をとると線形式として示されるから,数学的には胸高直径 (D) の2点に対する材積 (V) を与えることによって定まることになる。わずかな標本木によって羃指数うを推定する場合,胸高直侵の分布のうえで定められた二つの直径階DL, Dsから,適宜標準木を選ぶ方法が考えられる。このときのうの推定値〓の分散はVar. (〓)=(λL2S2) σe2/(xL-xS)2として与えられる。ここに, xL=log DL, xS=logDS, σe2=logVの誤差分散,またλL, λSはそれぞれの直径階における順序統計量の標準偏差にかかる係数である。さらに,DLは大きいほうの胸高直径を, Dsは小さいほうの胸高直径を示す。二つの直径階DL, DsxL'=m+√2σx, xs'=m-√2σxがそれぞれ含まれる直径階である場合に,最もすぐれた推定値を与える。ここに, m, σxはそれぞれlogDの平均値,標準編差を示す。標準木がもし適切にとられるなら,たとえその本数はわずかであっても,ラソダムに標本木を選ぶ場合に比して,かなり高い精度の推定値を期待することができるであろう。

収録刊行物

詳細情報 詳細情報について

問題の指摘

ページトップへ