Posture Control Considering Joint Stiffness of a Robotic Arm Driven by Rubberless Artificial Muscle

この論文をさがす

抄録

<p>This paper describes a joint angle control considering the passive joint stiffness of robotic arms driven by rubberless artificial muscle (RLAM), which is a pneumatic actuator. The contraction mechanism of RLAM is the same as that of the McKibben artificial muscle. Unlike the McKibben artificial muscle, RLAM is constructed using an airbag made of a nonelastic material instead of a rubber tube.</p><p>The objective of this study is to realize a soft contact movement of robotic arms by applying the passive compliance characteristics of RLAMs. In this study, we derive a mathematical expression for the relationship between the output of an RLAM and the joint stiffness of a robotic arm. In addition, we suggest a control scheme for each RLAM. We confirm the validity of these suggestions experimentally. From the result, we observe a good control performance of the joint angle. A robotic arm moves smoothly according to the force added from outside by setting the passive stiffness of the arm.</p>

収録刊行物

被引用文献 (2)*注記

もっと見る

参考文献 (20)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ