- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
AUTOMATIC GENERATION OF REALISTIC CITY IMAGES FROM RARE DATASET USING GAN ENHANCED WITH TRANSFER LEARNING
-
- SHIBATA Yosuke
- 九州大学大学院 工学府土木工学専攻
-
- MACHIDA Tomoya
- 九州大学大学院
-
- NISHIMURA Kazuya
- 九州大学大学院 システム情報科学府情報知能工学専攻
-
- BISE Ryoma
- 九州大学大学院 システム情報科学研究院情報知能工学部門
-
- ASAI Mistuteru
- 九州大学 工学研究院社会基盤部門
Bibliographic Information
- Other Title
-
- 転移学習で強化したGANによる稀少データから写実的な都市画像の自動生成
Description
<p>There has been a growing demand to strengthen existing disaster prevention education tobe prepared for the huge tsunami expected to occur in the near future. Virtual reality, which allows people to virtually experience natural disasters, has a strong potential in fostering disaster awareness among citizens. However, it requires enormous human and time resources to map the texture of structures to urban area-imitating virtual space. On the other hand, pix2pixHD proposed by Wang et al. can generate high-resolution synthetic images by learning from reference images, label data, and object boundary data. In this study, we applied pix2pixHD and transfer learning, which diverts networks trained on other similar domains, to verify texture mapping of urban areas in Japan from a limited set of image data.</p>
Journal
-
- Artificial Intelligence and Data Science
-
Artificial Intelligence and Data Science 3 (J2), 551-557, 2022
Japan Society of Civil Engineers
- Tweet
Details 詳細情報について
-
- CRID
- 1390012638715522560
-
- ISSN
- 24359262
-
- Text Lang
- ja
-
- Article Type
- journal article
-
- Data Source
-
- JaLC
- KAKEN
-
- Abstract License Flag
- Disallowed