外れ値環境下におけるロバストSelf-tuning Controller

書誌事項

タイトル別名
  • Robust Self-tuning Controller under Outliers
  • ハズレ チ カンキョウ カ ニ オケル ロバスト Self-tuning Controller

この論文をさがす

説明

In this paper, we propose a robust self-tuning controller (STC) under outliers. A parameter update law of a conventional STC consists of a recursive least squares estimation, and the estimation is given by a solution of a minimization problem of estimated errors. In the proposed method, we estimate parameters and outliers explicitly by addition of a l1 regression to the minimization problem like a robust Kalman filter via l1 regression, and the estimated outliers are removed from measurement outputs in the controller. We also analyze control performances of the proposed method under outliers, and it is shown theoretically that performances in the proposed method with outliers are nearly equal to ones in the normal STC without outliers. Numerical simulation, in which a controlled object is a non-minimum phase system, demonstrates effectiveness of the proposed method.

収録刊行物

参考文献 (10)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ