A Discrete Analogue of Periodic Delta Bose Gas and Affine Hecke Algebra

Abstract

We consider an eigenvalue problem for a discrete analogue of the Hamiltonian of the non-ideal Bose gas with delta-potentials on a circle. It is a two-parameter deformation of the discrete Hamiltonian for joint moments of the partition function of the O'Connell-Yor semi-discrete polymer. We construct the propagation operator by using integral-reflection operators, which give a representation of the affine Hecke algebra. We also construct eigenfunctions by means of the Bethe ansatz method. In the case where one parameter of our Hamiltonian is equal to zero, the eigenfunctions are given by specializations of the Hall-Littlewood polynomials.

Journal

  • Funkcialaj Ekvacioj

    Funkcialaj Ekvacioj 57 (1), 107-118, 2014

    Division of Functional Equations, The Mathematical Society of Japan

Citations (3)*help

See more

References(15)*help

See more

Related Projects

See more

Details

  • CRID
    1390282680088444672
  • NII Article ID
    130003391676
  • DOI
    10.1619/fesi.57.107
  • ISSN
    05328721
    http://id.crossref.org/issn/05328721
  • Text Lang
    en
  • Data Source
    • JaLC
    • Crossref
    • CiNii Articles
    • KAKEN
  • Abstract License Flag
    Disallowed

Report a problem

Back to top