Etching Control of HfN Encapsulating Layer for PtHf-Silicide Formation with Dopant Segregation Process

Abstract

<p>In this paper, we have investigated the etching selectivity of HfN encapsulating layer for high quality PtHf-alloy silicide (PtHfSi) formation with low contact resistivity on Si(100). The HfN(10 nm)/PtHf(20 nm)/p-Si(100) stacked layer was in-situ deposited by RF-magnetron sputtering at room temperature. Then, silicidation was carried out at 500°C/20 min in N2/4.9%H2 ambient. Next, the HfN encapsulating layer was etched for 1-10 min by buffered-HF (BHF) followed by the unreacted PtHf metal etching. We have found that the etching duration of the 10-nm-thick HfN encapsulating layer should be shorter than 6 min to maintain the PtHfSi crystallinity. This is probably because the PtHf-alloy silicide was gradually etched by BHF especially for the Hf atoms after the HfN was completely removed. The optimized etching process realized the ultra-low contact resistivity of PtHfSi to p+/n-Si(100) and n+/p-Si(100) such as 9.4×10-9Ωcm2 and 4.8×10-9Ωcm2, respectively, utilizing the dopant segregation process. The control of etching duration of HfN encapsulating layer is important to realize the high quality PtHfSi formation with low contact resistivity.</p>

Journal

  • IEICE Transactions on Electronics

    IEICE Transactions on Electronics E102.C (6), 453-457, 2019-06-01

    The Institute of Electronics, Information and Communication Engineers

References(19)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top