ロボット群による仮想フェロモンを伴う粒子群最適化を用いた探索アルゴリズムの研究

書誌事項

タイトル別名
  • Research on Search Algorithm Using Particle Swarm Optimization with Virtual Pheromone for Swarm Robots

この論文をさがす

説明

<p>This paper proposes a search algorithm using particle swarm optimization (PSO) with virtual pheromone for swarm robots. Swarm robots are attracting attention in disaster relief works to search for victims. The search algorithm involves a combination of global and local searching. The conventional search method consists of random walk as the global search and PSO as the local search. However, random walk is not efficient in complex environments. For efficient searching, PSO with virtual pheromone is used for the global search. The virtual pheromone drives the swarm robots to an unsearched area, dose not need map data, and has low calculation cost. In addition, it is not necessary in the proposed method to switch algorithms between global and local searching. The validity of the proposed method was confirmed from the simulation results.</p>

収録刊行物

被引用文献 (2)*注記

もっと見る

参考文献 (23)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ