Reliability Estimation for Self-Vehicle Pose Recognition Result Using LiDAR
-
- Akai Naoki
- 名古屋大学未来社会創造機構
-
- Morales Luis Yoichi
- 名古屋大学未来社会創造機構
-
- Hirayama Takatsugu
- 名古屋大学未来社会創造機構
-
- Murase Hiroshi
- 名古屋大学大学院情報学研究科
Bibliographic Information
- Other Title
-
- LiDARを用いた自車両位置認識結果の信頼度推定
- LiDAR オ モチイタ ジシャリョウ イチ ニンシキ ケッカ ノ シンライド スイテイ
Search this article
Description
This paper presents a reliability estimation method of localization results. In the method, an egovehicle pose and reliability are treated as hidden variables and are estimated simultaneously via Rao- Blackwellized particle filter (RBPF). The ego-vehicle pose is estimated by a sampling-based method, i.e., particle filter, and the reliability is estimated by an analytical method using prediction results of convolutional neural network (CNN). The CNN learns whether localization has failed or not and its output is used as an observable variable to estimate the reliability in the RBPF. Through experiments, it is shown that the estimated reliability could be used as an exact criterion for describing successful and fault localization results.
Journal
-
- Transactions of Society of Automotive Engineers of Japan
-
Transactions of Society of Automotive Engineers of Japan 50 (2), 609-615, 2019
Society of Automotive Engineers of Japan
- Tweet
Details 詳細情報について
-
- CRID
- 1390564238092951552
-
- NII Article ID
- 130007618778
-
- NII Book ID
- AN00105913
-
- ISSN
- 24339652
- 18830811
- 02878321
-
- NDL BIB ID
- 029595700
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- NDL Search
- CiNii Articles
- KAKEN
-
- Abstract License Flag
- Disallowed