[Updated on Apr. 18] Integration of CiNii Articles into CiNii Research

Unlearned Class Estimation Neural Network Based on Approximate GMM for FPGA Implementation

Bibliographic Information

Other Title
  • FPGA実装を指向した近似GMMに基づく未学習クラス推定ニューラルネット

Abstract

<p>General classification methods cannot treat unexpected patterns that are not considered in the training process. For this problem, our research group has proposed a probabilistic classification method that can classify abnormal patterns as the unlearned class. For the implementation of the classifier in the embedded hardware, this paper proposes a novel approximate Bayesian classification method with the anomaly detection based on Gaussian mixture models and the probabilistic density function of the unlearned class. The proposed classifier was applied to forearm motion classification in the experiments. Experimental results demonstrate the proposed method can achieve high classification performance as same as the previous model, and the effectiveness of the proposed method could be confirmed.</p>

Journal

Citations (0)*help

See more

References(0)*help

See more

Related Articles

See more

Related Data

See more

Related Books

See more

Related Dissertations

See more

Related Projects

See more

Related Products

See more

Details

Report a problem

Back to top