統計的因果推論の新しいトレンド - 検定力分析とベイズ推論 -

Bibliographic Information

Other Title
  • トウケイテキ インガ スイロン ノ アタラシイ トレンド : ケンテイリョク ブンセキ ト ベイズ スイロン

Search this article

Description

統計的仮説検定において,以下のような経験をした研究者も多いのではないだろうか?</p><p>(1) 統計的仮説検定が有意にならなかったので,p値が0.05より小さくなるまでサンプル数を増やした。(p-hacking)</p><p>(2) 有名な論文の内容を再検証しようとリプリケーション・スタディーを行ったのだが,結果を再現できない。</p><p>(3) ビッグデータを使って,男性と女性100万人のIQスコアから 2 群の差の検定を行った。</p><p>その結果,標本平均の差は0.1以下だったが t値が10で帰無仮説が却下された。標本サイズが大きすぎるようだ。</p><p>(4) 統計の初心者は,t値が大きければ大きいほど(あるいは p値が小さければ小さいほど) その効果自体が大きいと,標準化係数(効果量)との概念を混同しがちである。</p><p> 統計的仮説検定に関する批判は70年代から議論されていたのだが( Morrison and Henkel1970),この10年ほどの間に大きな変化が起きつつある。ひとつは検定力分析の重要性,もうひとつはベイズ推論である。これらはマーケティング・サイエンスの研究者にとっても,実験計画や分析において将来,重要になる可能性があるので紹介しておく。

Journal

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top